

FORMATION

Génie civil Calcul de structures

Mis à jour le 18/09/2025

Comportement dynamique des structures

> CETTE FORMATION S'ADRESSE À

- Ingénieurs chargés de la conception, du calcul et de la vérification des structures de bâtiment ou de génie civil.

> PRÉ-REQUIS

Connaissance de la résistance des matériaux et de la statique. Maîtrise du calcul matriciel et espaces vectoriels.

> INFORMATIONS PRATIQUES

Modalité : Présentiel Durée : 3,00 jours

EN BREF

Le dimensionnement des structures de génie civil est très impacté par les chargements dynamiques, notamment sismiques. Cette session vous apportera la compréhension suffisante des bases du calcul dynamique ainsi que des conseils et bonnes pratiques pour la modélisation de structures simples. Vous pourrez ainsi par des calculs « manuels » contrôler les études numériques.

OBJECTIFS

- DEFINIR les actions dynamiques. - CONNAITRE les différentes méthodes d'analyse et principes de modélisation. - APPLIQUER les concepts théoriques sur les applications opérationnelles à partir des cas concrets.

THÉMATIQUES

Définition et caractérisation des actions. Système à 1 degré de liberté. Systèmes à N degrés de liberté. Discrétisation des structures continues. Modélisation en dynamique. Méthodes numériques. Vibrations longitudinales des poutres. Formations complémentaires : 9152 : Eurocode 8 ouvrages d'art 131 : Eurocode 8 bâtiment 246 : AFCEN nuclear codes for Civil Works

PRINCIPES ET MÉTHODES PÉDAGOGIQUES

-Questionnaire d'autopositionnement (prérequis, expériences, attentes), fil rouge assuré par le coordinateur expert ou un référent de PFC, temps d'interaction avec le(s) expert(s) et les apprenants, apports théoriques et méthodologiques, illustrations concrètes, exemples d'application, étude de cas, quiz, retour d'experience. Evaluation des connaissances : exemples d'application, étude de cas, quiz.

EVALUATION DES CONNAISSANCES

Exemples d'application, étude de cas, quiz...

COORDINATION

Mathieu ARQUIER, STRAINS, Professeur de l'Ecole des Ponts

PROGRAMME DÉTAILLÉ

Journée	Introduction, présentation de la session et recueil des attentes des participants
Présentation de la session	
Analyser un système dynamique simple pontuel de 1 degré de liberté selon les différents types de sollicitations	Rappel oscillateur ponctuel 1 ddl Vibrations libres Vibrations forcées harmoniques et impulsionnelles Choc et sismique
	Déjeuner
Analyser et modéliser des systèmes simples	- Oscillateur généralisé à 1 ddl - Méthode de Rayleigh à une fonction - exemples - Introduction à un système à 2 ddl ponctuels - Matrice de masse et raideur, modes propres - Etude de cas
Journée Modéliser et analyser un système à n ddl qui n'est plus ponctuel	 Méthode de Rayleigh-Ritz générale Restriction aux fonctions de forme d'éléments-finis en flexion et traction Exemple d'un portique à n étages Modes propre et vibration libres non amorties Déjeuner
Déterminer l'origine des dissipations d'énergie et les modéliser par une matrice d'amortissement	- Matrice d'amortissement - Vibration libres amorties - Vibrations forcées - Réponse sismique à N ddl
Journée Différencier des modèles continus à des modèles discrets	- Systemes continus - Poutre - modes longitudinaux - Poutre - modes en flexion - Poutre propagation des ondes Déjeuner
Appliquer en fonction de son cas d'étude la méthode numérique appropriée de résolution en dynamique	- Introduction aux résolutions numériques - Méthode fréquentielle, calcul spectral, schéma de Newmark temporel - Exemples et comparaisons
	Synthèse et évaluation de la formation